Question :
\[
7 : 5 = x : 20.50
\]
\[
5x = 7 \times 20.50
\]
\[
x = \frac{7 \times 20.50}{5} = 28.7
\]
La valeur de \( x \) est 28.7.
Question :
Si \( (4x + 3y) : (3x + 5y) = 6 : 7 \), trouvez :
* i)] \( x : y \)
* ii)] \( x \), si \( y = 10 \)
* iii)] \( y \), si \( x = 27 \)
Solution :
* i)]
\[
7 \times (4x + 3y) = 6 \times (3x + 5y)
\]
\[
28x + 21y = 18x + 30y
\]
\[
28x - 18x = 30y - 21y
\]
\[
10x = 9y
\]
\[
\frac{x}{y} = \frac{9}{10}
\]
Donc, \( x : y = 9 : 10 \).
* ii)]
Étant donné \( y = 10 \),
\[
(4x + 3 \times 10) : (3x + 5 \times 10) = 6 : 7
\]
\[
(4x + 30) : (3x + 50) = 6 : 7
\]
\[
7 \times (4x + 30) = 6 \times (3x + 50)
\]
\[
28x + 210 = 18x + 300
\]
\[
28x - 18x = 300 - 210
\]
\[
10x = 90
\]
\[
x = \frac{90}{10} = 9
\]
* iii)]
Étant donné \( x = 27 \),
\[
(4 \times 27 + 3y) : (3 \times 27 + 5y) = 6 : 7
\]
\[
(108 + 3y) : (81 + 5y) = 6 : 7
\]
\[
7 \times (108 + 3y) = 6 \times (81 + 5y)
\]
\[
756 + 21y = 486 + 30y
\]
\[
756 - 486 = 30y - 21y
\]
\[
270 = 9y
\]
\[
y = \frac{270}{9} = 30
\]