1. Développer les expressions suivantes :
- a. \( 2(3x - 1)(2 - x) \)
\[
2(3x - 1)(2 - x) = (6x - 2)(2 - x)
\]
\[
= 12x - 6x^2 - 4 + 2x
\]
\[
= -6x^2 + 14x - 4
\]
- b. \( (2x + 3)^2 \)
\[
(2x + 3)^2 = 4x^2 + 12x + 9
\]
- c. \( (3x - 2)(3x + 2) \)
\[
(3x - 2)(3x + 2) = (3x)^2 - 2^2
\]
\[
= 9x^2 - 4
\]
- d. \( (5x - 6)^2 \)
\[
(5x - 6)^2 = (5x)^2 - 2 \times 5x \times 6 + 6^2
\]
\[
= 25x^2 - 60x + 36
\]
2. Factoriser les expressions suivantes :
- a. \( (x + 1)(1 - x) - (x + 1)(2x + 1) \)
\[
(x + 1)(1 - x) - (x + 1)(2x + 1) = (x + 1)[(1 - x) - (2x + 1)]
\]
\[
= (x + 1)(1 - x - 2x - 1)
\]
\[
= (x + 1)(-3x)
\]
\[
= -3x(x + 1)
\]
- b. \( 3(2x - 2) + (x + 1)(1 - x) \)
\[
3(2x - 2) + (x + 1)(1 - x) = 3[2(x - 1)] + (x + 1)[-(x - 1)]
\]
\[
= 6(x - 1) - (x + 1)(x - 1)
\]
\[
= (x - 1)[6 - (x + 1)]
\]
\[
= (x - 1)(6 - x - 1)
\]
\[
= (x - 1)(5 - x)
\]
- c. \( 2x(x + 1) + (x + 1)(x^2 + 1) \)
\[
2x(x + 1) + (x + 1)(x^2 + 1) = (x + 1)[2x + (x^2 + 1)]
\]
\[
= (x + 1)(x^2 + 2x + 1)
\]
\[
= (x + 1)(x + 1)^2
\]
- d. \( 12x^2 - 6x + (2x - 1)(5 - 2x) \)
\[
12x^2 - 6x + (2x - 1)(5 - 2x) = 6x(2x - 1) + (2x - 1)(5 - 2x)
\]
\[
= (2x - 1)[6x + (5 - 2x)]
\]
\[
= (2x - 1)(4x + 5)
\]
Effectuer les factorisations suivantes :
a. \( (3x + 1)(2 - 2x) - (5 - 4x)(x - 1) \)}
On remarque l'égalité : \( 2 - 2x = -2(x - 1) \)
\[
(3x + 1)(2 - 2x) - (5 - 4x)(x - 1) = (3x + 1)[-2(x - 1)] - (5 - 4x)(x - 1)
\]
\[
= (x - 1)[-2(3x + 1) - (5 - 4x)]
\]
\[
= (x - 1)(-6x - 2 - 5 + 4x) = (x - 1)(-2x - 7)
\]
b. \( (2 - 3x)(3 + 2x) + (3x + 2)(-6x - 9) \)}
On a l'égalité : \( -6x - 9 = -3(2x + 3) \)
\[
(2 - 3x)(3 + 2x) + (3x + 2)(-6x - 9) = (2 - 3x)(3 + 2x) + (3x + 2)[-3(2x + 3)]
\]
\[
= (2x + 3)[(2 - 3x) - 3(3x + 2)]
\]
\[
= (2x + 3)(2 - 3x - 9x - 6)
\]
\[
= (2x + 3)(-12x - 4)
\]
\[
= -4(2x + 3)(3x + 1)
\]
c. \( (6x + 2)(2x + 3) + (9x + 3)^2 \)}
On a : \( 6x + 2 = 2(3x + 1) \) ; \( 9x + 3 = 3(3x + 1) \)
\[
(6x + 2)(2x + 3) + (9x + 3)^2 = [2(3x + 1)(2x + 3)] + [3(3x + 1)]^2
\]
\[
= (3x + 1)[2(2x + 3) + 9(3x + 1)]
\]
\[
= (3x + 1)(4x + 6 + 27x + 9)
\]
\[
= (3x + 1)(31x + 15)
\]
d. \( (3x + 3)^2 - (x + 2)(5x + 4) \)}
\[
(3x + 3)^2 - (x + 2)(5x + 4) = (9x^2 + 18x + 9) - (5x^2 + 4x + 10x + 8)
\]
\[
= 9x^2 + 18x + 9 - 5x^2 - 14x - 8
\]
\[
= 4x^2 + 4x + 1 = (2x + 1)^2
\]